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Abstract

Recently, the rate and quantity at which photographs are being

produced and published have greatly increased. Frequently, many of

these photos have the same subject, are of the same scene, etc. The

ability to combine such images to constitute a single detailed

representation would afford the viewer with a succinct and

comprehensive understanding of the captured data. In this work, we

compute such a mosaic for data captured by the prototype camera

AWARE-2. This device produces many high-resolution images of a

single scene. Our contribution is a theoretically sound and rigorous

approach to combining these high-resolution images into a single

consistent gigapixel image.
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1 Introduction

Image mosaicking is, like its arts/crafts namesake, the process of combining

multiple small tiles/images that, maybe, aren’t meaningful on their own, to

produce a single larger and complete image. In computer vision, this refers

more specifically to the combination of images of a similar/the same

scene/subject to produce a more complete representation of that specific

scene or subject. Particular instances of this application may be as local as

the production of panoramas on an individual’s mobile phone or, as global

as the combination of images collected from users all over the world and

even as broad-reaching as combining astronomical images to create a

picture of the cosmos.

Most approaches to image mosaic formation can be described by the

following common framework. First, a standardised feature points selection

process is applied to each image. This step usually consists of computing

some generic feature descriptor; many of which have been developed for

such task and successfully employed repeatedly, e.g. SURF [1]. A search

must then be performed across all possible pairings of these descriptors. A

scoring method, e.g. RANSAC [2], produces a quantitative correspondence

between each of the candidate pairings. These values are then compared to

compute the best match between some subsets of those points. This set of

matching points is used to compute the homography [3] which is

subsequently applied to the appropriate images. Of course, variations on

the feature descriptor utilized and the scope within which the search for

correspondences is performed varies from application to application.
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Some preliminary outputs of a naive version of this process are shown in

Figure 1. There are discontinuities/misalignments visible in many portions

of the constructed mosaic. This construction was performed without the

aid of any additional information, i.e. only the images were used as input to

the process. In this paper we describe a method for computing more

accurate mosaics by utilizing structure in the imaging array as well as in

the images themselves. Unlike the feature descriptor based techniques that

must be tuned for each application, our global, data-driven technique

requires no tuning and is capable of producing the homography between

images in parallel.

Figure 1: Mosaic output from seven images using current state of the art

tools.

The remainder of the paper is organized as follows: Section 2 covers
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background material related to the AWARE-2 sensor and the techniques

applied to its data, Section 3 describes our proposed approach, Section 4

describes our experimental results and we conclude in Section 5.

2 Background

2.1 Data

The apparatus by which the images utilized in this work was captured is a

prototype camera array named AWARE-2. This is a product of the Duke

Imaging and Spectroscopy Program led by Dr. David Brady at Duke

University in Durham, NC, USA. This device consists of a semi-spherical

array (shown in Figure 3a), of 98 micro-cameras, each with a 14-megapixel

resolution [4]. Sample images from these micro-cameras are shown in

Figure 2. The resulting imagery can be combined to form single images

with resolutions nearing 1-gigapixel.

While the camera apparatus is constructed to hold approximately 200

micro-cameras, currently only 98 are populated. The configuration of these

selected micro-cameras is illustrated in Figure 3b, as if one were looking

into the imaging sensors.
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(a) (b)

Figure 2: Two example high-resolution images from the micro-camera array.

2.2 Problem Formulation

Suppose that we are given an image I, and a set of sub-images (tiles):

I = {I1, . . . , Is}, (1)

where the Ii’s can be viewed as an intensity function from the region of the

image-plane Ui to a set of positive integers [0, 255] for the case of gray-scale

mosaicking. Without many changes we can extend this procedure to

colored pictures by changing the function Ii : Ui → [0, 255]3, RGB-values.

We say that two sub-images I1, I2 are related if I1 ∩ I2 6= ∅. We can then

turn the set of sub-images into a graph where the nodes are the sub-images

and an edge exists between nodes Ix and Iy if they are related. We denote

this graph also by I since it is completely determined by the set I for a

given picture I.
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(a) Schematic of the AWARE-2 camera

array [5].

(b) Graph colored to indicate pop-

ulated micro-cameras in the array

[6]. Shaded regions indicate populated

micro-cameras. Intersection between re-

gions indicates overlap between the re-

spective micro-camera images.

Figure 3: Depictions of the AWARE-2 camera array.

In the mosaicking problem we require the two following conditions to hold:

1. I =
s⋃

i=1

Ii and (2)

2. the graph of the sub-images is connected.

The second property implies that there is an overlap between each tile and

some other neighboring ones, hence, a matching can be produced between

them. This matching, or mapping, between pairs of images is the crux of

image mosaicking. Since our graph of sub-images is connected we can
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create a process which will gradually stich neighboring images together to

create a global picture. The first property guarantees that the output

picture will be achieved by this mosaicking.

2.3 Current Methods

The methods followed by many current efforts such as [7] and others

enumerated in [8] and [9], can be summarized as follows. The first step is to

compute feature descriptors of the image tiles. The techniques may vary in

the choice of feature descriptor, as mentioned in Section 1. Once each image

is succinctly described, the descriptors are compared using some measure,

e.g. RANSAC [2]. The parsimony with which this comparison is performed,

i.e. whether each descriptor set is exhaustively compared to every other

descriptor set, is another facet by which the various techniques vary [10].

A set of corresponding points {xj
1 . . . ,xj

p} ∈ Uj and {xk
1, . . . , x

k
p} ∈ Uk is

then considered. To align the respective images Ij and Ik via these point

sets, a homography H must be computed such that

xj
i = Hxk

i ,∀i. (3)

The result is computed by solving the system of equations represented by

Equation (3) as described in [3, 11].
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3 Methods

3.1 Image Decomposition

From the geometry of the camera array [12], we can extract the relative

positions of the sub-images. Using this information in conjunction with the

extents of the sub-images, it was possible to compute the intersection, or

overlap, between each sub-image pair and form our graph of sub-images.

The neighborhood of a sub-image Ii is defined to be the set of sub-images

related to Ii, or in other words, the set of sub-images that have some

non-empty intersection with Ii:

Ni = {Ij|Ii ∩ Ij 6= Ø}. (4)

Obviously Ii ∈ Ni. In the graph theoretic language this is the vertex star of

the node I1.

Given a pair (Ii, Ij), Ij ∈ Ni, their extent is used to compute the size and

shape of the overlap between them. By performing this computation for all

such pairs including Ii, the minimal overlap between Ii and any of its

neighbors is determined. We compute the rectangle with maximal area,

entirely contained within this overlap and denote its dimensions by p × q.

Then we partition the sub-image Ii and all Ij ∈ Ni into m
p
× n

q
regions, e.g.

Ii =

mn
pq⋃

k=1

Ik
i . (5)

This partitioning, although seemingly increases the complexity of the
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algorithm by increasing the number of tiles, it ultimately decreases the

complexity of the problem by decreasing the size of the regions being

compared. Further simplification is gained by allowing for the comparison

of only the overlapping regions.

3.2 Sparse Subspace Recovery

In contrast to the methods commonly utilized for image mosaicking, as

described and reference in Section 2.3, the proposed approach highlights

similarity between portions of the image data itself. By computing a

low-rank representation of the query image over the support of the

column-space of its neighborhood, we are able to localize the overlap among

the sub-images. This method follows closely to that of Robust Subspace

Recovery via Dual-Sparsity Pursuit (RoSuRe-DSP), described in [13] and

recounted here.

3.2.1 Robust Subspace Recovery vis Dual Sparsity Pursuit

Consider a data set L ∈ Rd uniformly sampled from a union of subspaces

S = ∪J
i=1S

i, then assuming sufficient sample density, each sample can be

represented by the others from the same subspace with probability 1.

Mathematically, we represent the data matrix by L = [l1|l2| . . . |ln] , yielding

L = LW,

where W is n × n block-diagonal matrix given.
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It is worth noting that, to recover the underlying data sampled from UoS,

it is equivalent to find a matrix L and W under the above constraints. Let

us now define, mathematically, what the method does.

Definition 1 (k-block-diagonal matrix) We say that a n × n matrix M is

k-block-diagonal if and only if

1. There exists a permutation matrix P , such that the matrix

M̃ = PMP−1 is a block-diagonal matrix

2. the maximum dimension of each block of M̃ is less or equal to k + 1.

The set of all such matrices is denoted as BMk.

We next define the set of self representative matrices, based on the space

BMK as follows:

Definition 2 (k-self-representative matrix). We say that a d × n matrix X

with no zero columns is k-self-representative if and only if

X = XW,W ∈ BMk, wii = 0.

The space of all such d × n matrices is denoted by SRk

The problem can then be formulated as

min ‖W‖0 (6)

s.t.X ∈ SRk.

where || ∙ ||0 is the l0 vector pseudo-norm. We have a fundamental difficulty

in solving this problem on account of the combinatorial nature of ‖ ∙ ‖0 and
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the complicated geometry of SRk. For the former one, there are established

results of using the l1 norm to approximate the sparsity of W [14] [15]. The

real difficulty, however, is that SRk is a non-convex set and, thus the

minimization process is impossible, in general.

To avoid solving Eqn(6) with a non-convex region, we opt to integrate this

constraint into the objective function, and see the problem from a different

angle. We hence have the following definition:

Definition 3 (W0-function on a matrix space). For any d× n matrix X, if

there is W ∈ BMk, such that X = XW , let

W0(X) = min
W

‖W‖0, s.t. X = XW,wii = 0,W ∈ BMk.

Otherwise, W0(X) = ∞

Then instead of Eqn(6), we consider the following optimization problem:

min
L,E

W0(L) (7)

s.t.X = L ∈ SRk.

Next we will leverage the parsimonious property of the l1 norm to

approximate ‖ ∙ ‖0. First, the definition of W0(∙) is extended to an l1 norm

based function:

Definition 4 (W1-function on a matrix space). For any d× n matrix X, if

there exists W ∈ BMk, such that X = XW , let

W1(X) = min
W

‖W‖1, s.t. X = XW,wii = 0,W ∈ BMk.
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Otherwise, W1(X) = ∞

We then have the following problem,

minW1(L) (8)

s.t.X = L ∈ SRk

3.2.2 Application of RoSuRe-DSP

For a particular sub-image Ii with |Ni| = s, we construct a dictionary

matrix X whose columns are the columns of the regions Ik
j for all

sub-images Ij in the neighborhood Ni of Ii:

X = [I1
1 , . . . , I

mn
pq

1 , I1
2 , . . . , I

mn
pq

s ]. (9)

Having constructed this dictionary whose atoms are columns representing

portions of the neighborhood, we proceed to optimize for a low-rank

representation, Equation 8.

min
i

||Wi||1, s.t. X = XWi and Wi ∈ BMk. (10)

Here, ‖ ∙ ‖1 is the vector l1 norm. For a matrix X and an index set J , we let

XJ be the submatrix containing only the columns of indices in J .

As shown in [13], this procedure will result in a sparse and low-rank

coefficient matrix W that is also block diagonal. The blocks in W will

correspond to the different subspaces inherent in the data represented by

the matrix Xi. In this particular application, these subspaces are the

intersections between the regions. Additionally, the sparsity of the
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coefficients guarantees high values indicating correspondence between the

similar columns in those regions. In this fashion, all the computations are

performed on small, local neighborhoods without the need for global

information about the mosaic. This is the parallel nature of the method.

In the following sections we demonstrate this methods ability to define and

localize similarity between images while expounding on the structure of the

coefficient matrix and how it can be leveraged to construct the desired

mosaic.

3.3 The Structure of the Coefficients

3.3.1 Synthetic Data

To evaluate the proposed method for representation, increasingly realistic

data sets were utilized as input. The first two tests focused on synthetically

generated mosaic tile sets. The synthetic data was produced from a larger

test image, shown in Figure 4, by spatial windowing.

3.3.2 Tile Translation

To determine the proposed representation method’s functionality in regard

to simple translation, the test image, Figure 4, referred to as Iorig, was
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Figure 4: Test image from which synthetic sub-images, or tiles, were gener-

ated. [16]

partitioned into regular blocks on a 3 × 3 grid:

Iorig =









A B E

C D F

G H K









. (11)

These blocks were then grouped into four overlapping sub-images as

indicated in Equations (12)-(15).

I1 =




A B

C D



 (12) I2 =




B E

D F



 (13)

I3 =




C D

G H



 (14) I4 =




D F

H K



 (15)

Masks to indicate this subdivision of the test image can be seen in Figure 5.
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(a) Sub-image I1 in-

dicated.

(b) Sub-image I2

indicated.

(c) Sub-image I3 in-

dicated.

(d) Sub-image I4

indicated.

Figure 5: Masks indicating the portions of the test image, Figure 4, used to

create synthetic tiles.

In this experiment, we explicitly compute the similarity between the

sub-images for both the column- and row-spaces. To compute this

similarity amongst the columns, we follow the procedure exactly as outlined

in Section 3 by constructing the dictionary and constraint as shown in

Equation (16). For this test, we’ve decomposed the image such that there is

minimal similarity between the columns of I1 and I3 as well as between the

columns of I2 and I4.

Xc = XcWc, Xc = [I1, I2, I3, I4] (16)

Also for illustrative purposes, we’ve designed the sub-images such that

there is little similarity between the rows of I1 and I2 as well as between I3

and I4. To compute the row-space similarity, we simply need to transpose

the sub-images, as shown in Equation (17).

Xr = XrWr, Xr = [I t
1, I

t
2, I

t
3, I

t
4] (17)

Once the optimization from Equation (10) has been completed for both
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Equations (16) & (17), the similarity between the sub-images can be

observed from the coefficient matrices Wc and Wr, as shown in Figure 6.

Red lines have been added to the coefficient matrices, artificially, to

highlight the block structure. The lighter colors in the matrix represent

higher-valued coefficients and the darker colors represent lower-valued

coefficients.

(a) Wc (b) Wr

Figure 6: Coefficient matrices Wc and Wr at computed in Equations (16) &

(17). Lighter colors indicated high values. Blocks in the matrix, demarcated

by artificially inserted horizontal and vertical lines, are the representation of

the sub-image corresponding to the column in the space of the sub-image

corresponding to the row.

Considering Figure 6a, the bright bands of coefficients in the off-diagonal

blocks correspond precisely to the duplicate columns in the sub-images. For

example, the high-valued coefficients in the first block of the second row

indicate that the last few (right-most) columns of I1 are quite similar to the

first few (left-most) columns of I2, as expected from our construction of the
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test imagery. Similarity between the columns of I3 and I4 can also be

determined by the high-valued coefficients in the last block of the third row

and the third block of the last row. Likewise, considering Figure 6b allows

for the determination of the similarity between the rows of the sub-images.

Knowing the correspondence between rows and columns of the images

allows for recovery of the possible translation that is necessary to align the

images. It’s important to note, however, that not only is a correspondence

indicated by these coefficient values but, also the strength of the similarity.

3.3.3 Tile Rotation

The other portion of the problem presented by the real data for this

application is that of rotation of the sub-images. To test the proposed

method’s robustness to rotation, the same test image shown in Figure 4 was

divided into two overlapping sub-images, I1 and I2. The test proceeded by

applying a rotation to I2 about its centroid to mimic the possible rotation in

the AWARE-2 data. An example of I1 and I2 rotated is shown in Figure 7.

Once this rotation had been applied, the RoSuRe-DSP optimization was

performed. This procedure was followed for several rotations of I2. Selected

blocks of the resulting coefficient matrices are shown in Figure 8 for three

such rotations.

Figure 8a illustrates the type of coefficient band to expect in the blocks of

W for perfect alignment. Here, a single coefficient value in each column

represents a 1 − 1 correspondence between the columns in I1 and the
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(a) Portion of test image not ro-

tated: I1.

(b) Portion of test image rotated:

I2. Shown with arbitrary rota-

tion.

Figure 7: Image decomposition used for rotation tests.

(a) Coefficient matrix

W corresponding to

no rotation in I2.

(b) Coefficient matrix

W corresponding to a

CCW 0.5o rotation in

I2.

(c) Coefficient matrix

W corresponding to a

CCW 1o rotation in

I2.

Figure 8: Subsets of the coefficient matrix W corresponding to various rota-

tions of I2.

columns in I2. When I2 was rotated, the local self-similarity in Iorig allowed

for matching to still occur between columns of the sub-images. However, a

spreading in the coefficient band can be observed in Figures 8b & 8c. As

18



the rotation of I2 is increased, the width of the band is increased. Indeed,

the case illustrated in Figure 8a is a global minimum for the width of the

coefficient band. Consequently, the width of this band can be exploited to

compute the appropriate rotation of I2 to best align with I1. Besides the

actual white bands that represent common features, one can see in Figure 6

other non-zero entries of the matrix W. This is due to two reasons:

1. The self-similarity within the big pictures which comes from the fact

that it is a “natural image”.

2. Artifacts coming from the RoSuRe-DSP implementation.

For 40 test images the prescribed decomposition was performed at 360

different rotations of I2, covering a full circular rotation in 1o increments.

To illustrate the degradation of the detection of these bands, the

signal-to-noise ratios (SNR) for the examples in Figure 8 were computed

and are shown in Table 1.

Rotation SNR

0o 1.56dB

0.5o 1.40dB

1o 0.95dB

Table 1: Table of SNR values for band of strong coefficients in W corre-

sponding to the listed rotations in I2.

The maximum rotation that allowed for detection of the strong coefficient

band was 5o. This rotation tolerance will be utilized in future imaging as a
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calibration parameter for the insertion of the micro-cameras into the array.

The simple fact that RoSuRe-DSP is producing useful decompositions when

the input images are rotated at all deserves some discussion. The nature in

which the input matrices are rotated in these experiments, as well as in the

actual data, are not mathematical functions. The physical rotation of a

picture leads to a highly non-linear transformation of the corresponding

pixel representation matrix. Theoretically, when concerned with matrices,

it is unreasonable to expect similarity between a matrix and a rotated

version of itself. However, in this case we are targeting “natural” images

where there is some smoothness of the features from column to column.

Even when we rotate the image, the fact that the intensity is locally a

continuous function allows small patches to be still written as a linear

combination of similar columns. Without such local homogeneity this

method would not be viable at all.

4 Results on Captured Data from

AWARE-2

The proposed method was applied to all neighborhoods of each of the 98

images captured by the AWARE-2 camera array. The resulting mosaic is

shown in Figure 9. The final image had a resolution of 0.38-gigapixels and

was 483.3MB in size.

As noted in [17], there is no standard way to compare the results of image
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Figure 9: Computed mosaic.

mosaicking algorithms except a visual comparison. To that end, a small

sample of the image is shown, in Figure 10, in comparison to the same

portion produced by the methods described in Section 2.3. In this specific

instance, our method is shown to not suffer from a particular boundary

effect and corrects the floating head. However, since all methods suffer from

some error-inducing effects, an objective measure of quality would prove

invaluable.

We would like to, additionally, propose a specific method, leveraging the

subjective analysis currently employed, to quantify the quality of the

mosaics constructed by various methods for comparison. Starting with a set

of 50 natural images, each should be broken into 100 tiles utilizing some

readily available software, e.g. the crop command in ImageMagick1. These

tiles are then used as input to each of three mosaicking algorithms: the

proposed method, the method described in Section 2.3 and the graph-cuts

1http://www.imagemagick.org/Usage/crop/#crop tile
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(a) Portion of a computed mosaic

from [5]

(b) Similar portion of our com-

puted mosaic

Figure 10: Comparison of other work to our computed mosaic via a sampled

portion.

variation [18]. Once each method has reconstructed each of the 50 images,

ten sets of ten will be randomly selected. An individual will be assigned to

each set of ten and all three reconstructions for those ten images will be

presented to him/her. The task given them will be to rank the

reconstructions for each image by quality. Quality will be probed by

considering the smoothness, warping or lack thereof, and overall aesthetic

appeal of each reconstruction. The result will be a statistical ranking of the

subjective quality of each reconstruction.
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5 Conclusion and Future Work

In this paper we have proposed a novel utilization of sparse-decomposition

techniques within a rigorous set-theoretical framework for image

mosaicking. While the results cannot be quantitatively compared to other

work due to the lack of a standard measure, the results can be compared

visually. Accordingly, the results are comparable to existing techniques and,

yet, the method does not rely on heuristically defined tools. The authors

wish to continue this line of thought, focusing on a quantitative measure of

mosaic quality. To that end, the authors will implement the testing

procedure outlined in Section 4.
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